R - Python - Julia

Insights into old and new languages for data science and machine learning and implications for their use in (high performance) production environments

Simon Wenkel

https://www.simonwenkel.com

useR Tallinn - January 16th, 2020

License Info

©Simon Wenkel

This PDF is released under the CC BY-SA 4.0 license.

Contents

General remarks

2 Introducing R, Python, and Julia

3 A look under the hood

4 Data Science/Machine Learning Stacks

- \bullet Language-dependent packages/ecosystem
- Language-independent packages

5 Considerations for using Julia, Python and R in production

Contents

General remarks

2 Introducing R, Python, and Julia

3 A look under the hood

Data Science/Machine Learning Stacks

- Language-dependent packages/ecosystem
- Language-independent packages

Considerations for using Julia, Python and R in production

What you (don't) get in this talk

• No recommendations what language to use (R, Python, Julia, C, Fortran, etc.) but things to consider when (re)-designing a product from scratch

Benchmark disclaimer

- $\bullet\,$ setup often unclear
- generic code vs. hand-optimized
- micro-benchmarks vs. end-to-end benchmark
- data set properties not well documented

... but from personal experience: most benchmark results give good indications ...

(High performance) production environments

• fundamental trade-offs

- implementation time vs. run-time performance
- salaries vs. infrastructure costs

• challenges

- licensing issues (e.g. some Boost (C++) libraries)/dependency hell
- prototyping speed
- performance issues with interpreted languages
- $\bullet\,$ program in C/C++/F03 and make it fast, secure and memory safe

• general setting

- "manual workflow": 1 hour vs. 7 day coffee break
- max. allowed runtime product useless otherwise

• implications of (simple) 10x speed-ups (R/Python/Julia)

- (if all bottlenecks are fixed)
- serving the same amount of customers with a fraction of hardware
- if real-time requirements: product/no product
- much faster prototyping
- $\bullet\,$ no C/C++ conversion department needed

Contents

General remarks

2 Introducing R, Python, and Julia

3 A look under the hood

Data Science/Machine Learning Stacks

- Language-dependent packages/ecosystem
- Language-independent packages

Considerations for using Julia, Python and R in production

Introducing Julia (1)

"[...] We've generated more **R** plots than any sane person should. C is our desert island programming language.

We love all of these languages; they are wonderful and powerful. For the work we do — scientific computing, machine learning, data mining, large-scale linear algebra, distributed and parallel computing — each one is perfect for some aspects of the work and terrible for others. Each one is a trade-off. [...]

We want a language that's open source, with a liberal license. We want the **speed of C** with the dynamism of Ruby. We want a language that's homoiconic, with **true macros like Lisp**, but with obvious, familiar **mathematical notation like Matlab**. We want something as usable for **general programming** as **Python**, as easy for **statistics as R**, as natural for **string processing** as **Perl**, as powerful for **linear algebra** as **Matlab**, as good at **gluing programs** together as the **shell**. Something that is **dirt simple to learn**, yet keeps the most serious hackers happy. We want it **interactive and** we want it **compiled**.[...]"

https://julialang.org/blog/2012/02/why-we-created-julia/

Introducing Julia (2)

- backed by MIT
- many packages developed by US gov. (funded) institutions
- not just another language aims to solve a bunch of significant problems
- mostly implemented in itself
- very good packages for mathematical optimization (written in Julia instead of Fortran 77)
- strong use cases (so far): numerics, mathematical optimization
- number of users in academia and industry grows rapidly
 - seems to start replacing Matlab
 - gets a lot of attention in math heavy industries (e.g. engineering, finance/insurance)
- seems to raise awareness in statistics, less in machine learning (yet)

Introducing Julia - code example (1)

```
using CSV # exports functions
import Flux # functions accessed via Flux.function
db = SOLite.DB()
tbl = CSV.File(file) |> SQLite.load!(db, "sqlite_table")
function add one(\Omega::UInt8)
    return \Omega # in this case the return statement is optional
add one(\alpha::Float64) = \alpha+=1
```

Introducing Julia - code example (2)

macros

```
@time add_one(1)
@time add_one(1.)
```

```
# structs instead of classes
struct airplane
    model::String
    engine_ID::UInt64
end
```

dictionaries available
dict = Dict("a" => 1, "b" => 3)
creates: Dict{String,Int64}

Introduction

	R	ę	juliå
Release Year	1993 (S: 1976)	1990	2012
License	GPL (v2) (core + (most?) packages), (tidyverse: GPLv3, MIT, on github: copyright/no license?)	PSFL (packages: BSD, MIT, Apache, GPL)	$\begin{array}{c} \text{MIT} \\ (\text{core} + \text{most} \\ \text{packages}) \end{array}$
Typing Discipline	dynamic	duck, dynamic, gradual	dynamic, nominative, parametric, optional
Language Type (default)	interpreted	interpreted	compiled JIT (via LLVM)
Simon W	R -	Python - Julia	13

Common features

- can use Jupyter notebooks (and RMarkdown)
- can use software written in other languages (FFIs)
- Garbage collected

Contents

General remarks

2 Introducing R, Python, and Julia

3 A look under the hood

Data Science/Machine Learning Stacks

- Language-dependent packages/ecosystem
- Language-independent packages

Considerations for using Julia, Python and R in production

A look under the hood

Are we really using what we think we are using?

R version 3.6.2 (2019-12-12) -- "Dark and Stormy Night" Copyright (C) 2019 The R Foundation for Statistical Computing Platform:

R is free software and comes it ABSOLUTELY NO WARRANTY. You are welcome to redistroated and conditions. Type 'license()' or 'lice()' for stribution details.

Natural language support but runn _____ in an English locale

R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite **F** r R packages in publications.

Type 'demo()' for some demos 'help()' for on-line help, or 'help.start()' for an HTML be ser interface to help. Type 'q()' to quit R.

Language source code - R

🖫 wch / r-	source					• Watch	87	★ Star	666	¥ Fork	210
<> Code	្រំ) Pull requests 0	III Projects 0	📰 Wiki	C Security	<u>ılı</u> Insights						

Read-only mirror of R source code from https://svn.r-project.org/R/, updated hourly. See the build instructions on the wiki page. https://github.com/wch/r-source/wiki/

54,621 commits	ູ່ 267 bra	anches 👘 0 pao	ckages 🚫 🛛	releases	0 contributors	ವೆ್ತು GPL-2.0
● R 37.2%	● C 32.4%	• Fortran 23.6%	Shell 1.2%	• M4 1.1%	• TeX 0.9%	Other 3.6%

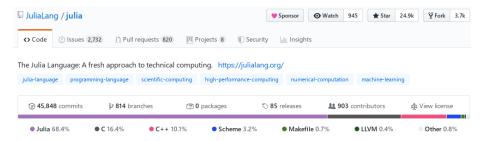
- C and Fortran: almost the entire stdlib written in them
- R: datasets, high-level functions/data structures, constants, documentation, tests; not used for intense computing/math functions?

Language source code - (C)Python

python / cpython			💙 Sponsor	O Watch 1.1k ★ Star 2	8.5k ¥ Fork 12.9k
<> Code ﴾ Pull reque	sts 1,038 🕕 Security	III Insights			
The Python programmir	ng language https://w	ww.python.org/			
To 106,042 commits	ဖို 8 branches	🗊 0 packages	♥ 413 releases	41,106 contributors	ঠ্রা View license
• Python 64.1%	• C 28.8% • O	bjective-C 4.4%	• C++ 1.2% • HT	ML 0.4% M4 0.4%	• Other 0.7%

- C/C++: almost the entire stdlib written in them, especially everything performance critical
- Python: high-level functions/classes/data structures, constants, some core libraries, documentation, tests; not used for intense computing/math functions

Language source code - Julia



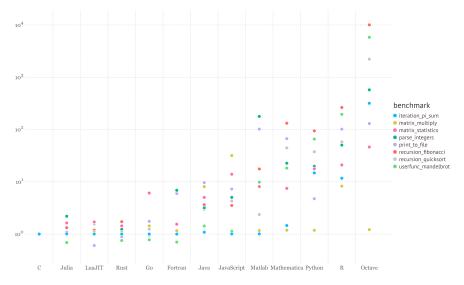
- C/C++: core functions (system level, e.g. OS support), LLVM backend, FFI (Foreign Function Interface)
- Julia: almost everything else (incl. stdlib)

source: https://julialang.org/benchmarks/ [1]

Simon Wenkel

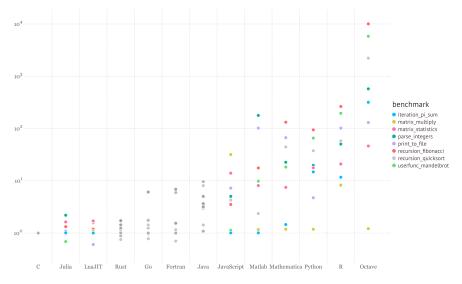
R - Python - Julia

20/53



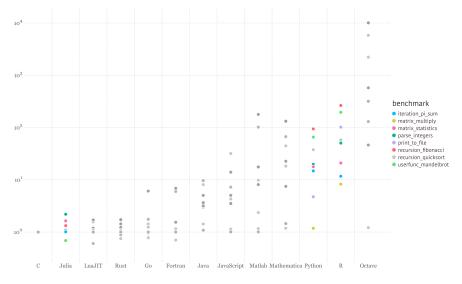
https://julialang.org/benchmarks/ [1]

Simon Wenkel



https://julialang.org/benchmarks/ [1]

Simon Wenkel



https://julialang.org/benchmarks/ [1]

Simon Wenkel

How to make things fast and efficient

- without re-writing our DS/ML pipelines in C/Fortran/CUDA/Rust/etc.
- at almost no development costs (time)
- aiming at orders of magnitude speed-ups (not a few percent improvement)
- NB!: not going to focus on multi-threading or GPGPU

Making things fast and efficient - Math Libraries

- BLAS (Basic Linear Algebra Subprograms)
 - written in Fortran
- ATLAS (Automatically Tuned Linear Algebra Software)
 - written in C, Fortran, Pascal, Assembly
 - faster than BLAS
- OpenBLAS
 - optimized BLAS library written in Fortran, Assembly, C
 - much faster than BLAS and faster than ATLAS
 - OpenBLAS leads to 2-10x faster matrix computation in R!(as of 2013 ;))
- Intel MKL (Math Kernel Library)
 - hand-optimized for Intel CPUs in C, C++, Fortran (+ Assembly?)
 - a bit/a lot faster than OpenBLAS depending on application and platform

tensorflow/core/platform/cpu_feature_guard.cc:145] This TensorFlow binary is optimized with Intel(R) MKL-DNN to use the following CPU instructions in performance critical operations: SSE4.1 SSE4.2 AVX

Other libs: ARPACK-NG, Eigen, LAPACK (with BLAS/ATLAS), cuBLAS, clBLAS, Armadillo, Apple accelerate, ...

Making things fast and efficient - Language level

best practices	use correct libraries, avoid loops, use functions, use vectorization, don't use dplyr ² [3, 4, 5, 6]	use correct libraries, avoid loops, use vectorization, don't use pandas	(type definitions), use functions, think twice beforce using vectorization
JIT	R-compiler ³ , R-JIT (deprecated?), RIR	PyPy, Numba	part of Julia
(C, C++, etc.) extension generator	N/A?	Cython	not necessary

contains more powerful optimization than Numba+Cython [2]

²according to it's description: "A fast, consistent tool for working with data frame like objects, both in memory and out of memory."

enabled since R 3.4.0, runs after the 1st or 2nd time a function is used [7]

julia 1

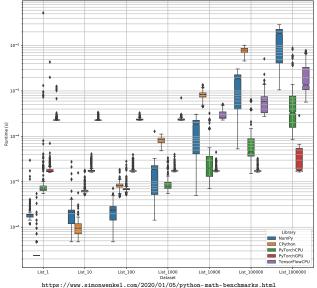
Choosing the correct library - "basic math"

- running a mathematical function (e.g. sin(x)) on:
 - lists of various lengths
 - matrices (square) of various sizes
 - no return/output, only input and calculations
 - both reach sizes should be split into smaller chunks for parallel processing
- 200 iterations per function and dataset
- \bullet not a trivial benchmark that indicates advantages/disadvantages of loops
- original idea: best Python library for different list/array size
- NB!: Garbage Collection!
- NB!: log-log plots!

Choosing the correct library - Python "basic math" (1)

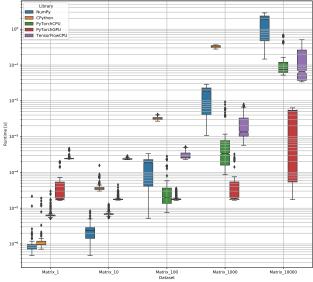
TensorFlowCPU on Matrix 1000 0.008 0.007 0.006 0.005 Runtime [s] 00 8 0.004 0.003 8 0.002 0.001 sin cos tan asin acos atan exp sinh cosh tanh abs ceil floor sart Function

Choosing the correct library - Python "basic math" (2)



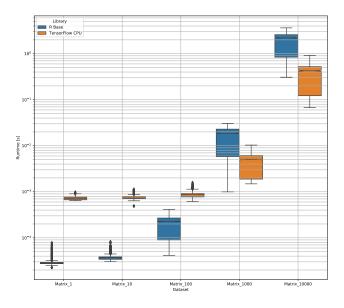
neeps.//www.simonwenkei.com/2020/01/00/python-match-benchm

Choosing the correct library - Python "basic math" (3)



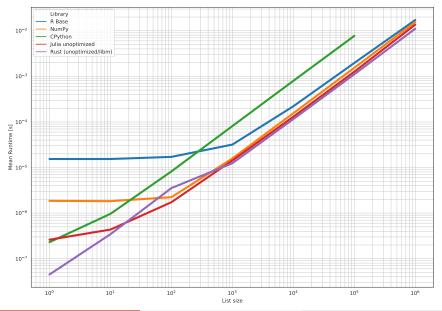
https://www.simonwenkel.com/2020/01/05/python-math-benchmarks.html

Choosing the correct library - R "basic math"



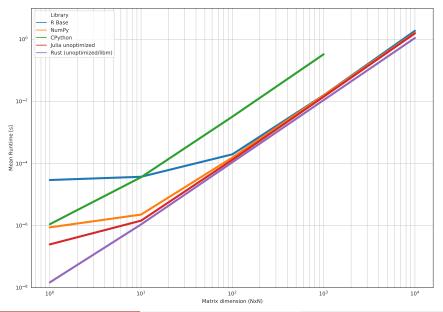
- single thread only
- via py_call?
- no direct C++ API usage?
- GPU seems to work

"Basic math" language comparison (1)



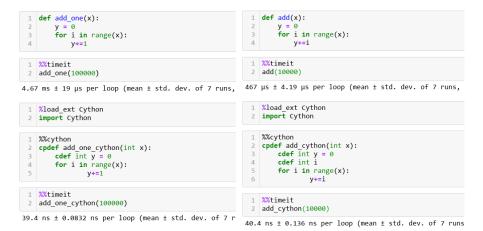
Simon Wenkel

"Basic math" language comparison (2)

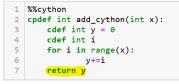


Simon Wenkel

Cython - toy example



Cython - it's not that easy



```
1 %%timeit
2 add_cython(10000)
```

1.21 μs ± 10.7 ns per loop (mean ± std. dev. of 7

- outside Jupyter notebooks: precompilation with "setup.py"
- high performance: aim at "pure cython"
- usage with NumPy slightly more complicated
- \bullet direct integration of C/C++ libraries
- expect to spend a week to learn and understand it

Contents

General remarks

2 Introducing R, Python, and Julia

3 A look under the hood

Data Science/Machine Learning Stacks

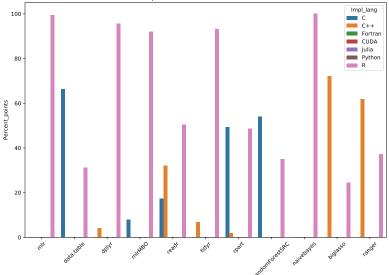
- Language-dependent packages/ecosystem
- Language-independent packages

Considerations for using Julia, Python and R in production

A look under the hood - part 2

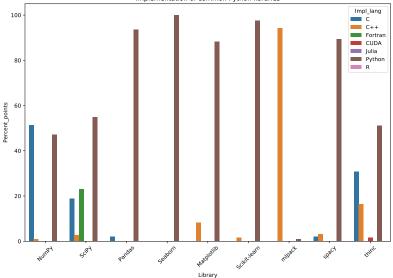
Are we really using what we think we are using? - Part 2

Common R libraries



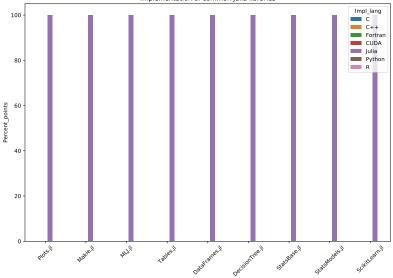
Implementation of common R libraries

Common Python libraries



Implementation of common Python libraries

Common Julia libraries



Implementation of common Julia libraries

Geospatial/Geostats - R

	C	C++	CUDA	Julia	Python	R
rGDAL	6%	45 %	0 %	0 %	0 %	36~%
sp	$21 \ \%$	0 %	0 %	0 %	0 %	21~%
gstat	62 %	$1 \ \%$	0 %	0 %	0 %	37~%
maptools	41 %	0 %	0 %	0 %	0 %	59~%
rGDAL sp gstat maptools geoR	4 %	0 %	0 %	0 %	0 %	96~%

Geospatial/Geostats - Python

Until 1-3 years ago, Python was used (almost) only as a gluetool for various geospatial packages/GIS.

- PostGIS: PostgreSQL and C
- QGIS: written in C++ (+ Python for API)
- GRASS GIS: written in C and C++ (+ Python for API)
- SAGA: written in C++ and C
- ESRI ArcGIS's script environment/API migrated from VBA to Python

Benchmarks

(there are so many benchmarks, and there is so much variance) general

- Julia up to 400 times faster than R
- Python often 10 times faster than R

machine learning

- Python/Scikit-learn up to 10 times faster than R/caret and with better results
- Python/mlpack is between 5 and 50 times faster than Python/Scikit-learn
- Julia's ML packages are between 2 slower and 400 times faster than Python/Scikit-learn

Language-independent packages (machine learning)

Performance matters!

Gradient Boosting Libraries

	C	C++	CUDA	Julia	Python	\mathbf{R}
CatBoost						1 %
$\operatorname{LightGBM}$	6%	60~%	0? %	0 %	22~%	11~%
XGBoost	0 %	41~%	14~%	0 %	14~%	10~%

Deep Learning Libraries

	C	C++	CUDA	Julia	Python	R
Caffe	0 %	80 %	6 %	0 %	9~%	0 %
Chainer	0 %	10~%	2~%	0 %	76~%	0 %
Darknet	90~%	0 %	8 %	0 %	0 %	0 %
Deeplearning4j	0 %	29~%	4 %	0 %	1 %	0 %
Flux	0 %	0 %	0? %	100~%	0 %	0 %
MXNet	0 %	31~%	4 %	0 %	32~%	0 %
PyTorch	5 %	51~%	8 %	0 %	32~%	0 %
TensorFlow	0 %	61~%	0? %	0 %	31~%	0 %
Theano	5 %	0 %	1 %	0 %	94~%	0 %

Contents

General remarks

2 Introducing R, Python, and Julia

3 A look under the hood

Data Science/Machine Learning Stacks

- Language-dependent packages/ecosystem
- Language-independent packages

5 Considerations for using Julia, Python and R in production

Considerations for production use (1)

General

- what packages are available
- define what you need in terms of performance
- remember infrastructure and development costs
- identify the skill set of team members
- \bullet avoid writing packages in C/C++ (safety+security)
- write benchmarks

Considerations for production use (2)

use R

- performance is not important
- many legacy stats packages are needed
- if performance is required: give tensorflow a chance
- if current products are built around it

Considerations for production use (3)

use Python

- unified backend (incl. webservices) is required
- $\bullet\,$ machine learning is a key part (no way around Python (+C/C++/CUDA) yet)
- use PyTorch/TensorFlow or cython for heavy math

Considerations for production use (4)

use Julia

- if strong mathematical optimization across all packages is needed
- clean from scratch implementation is required
- pure performance is required

Some suggestions to the R community

- analysis of R: why is it so slow?
- cython allows to deploy Python in production anything cython-like for R in development?
- R as gluetool only?
- benchmark packages (e.g. data.table vs DBMS)
- R API for mlpack

References I

- [1] URL https://julialang.org/benchmarks/.
- [2] Christopher Rackauckas. Why Numba and Cython are not substitutes for Julia, 2018. URL https://www.stochasticlifestyle.com/ why-numba-and-cython-are-not-substitutes-for-julia/.
- [3] URL https://h2oai.github.io/db-benchmark/.
- [4] John Mount. Timing Working With a Row or a Column from a data.frame, 2019. URL http://www.win-vector.com/blog/2019/05/ timing-working-with-a-row-or-a-column-from-a-data-frame/.
- [5] John Mount. http://www.win-vector.com/blog/2019/06/data-table-is-muchbetter-than-you-have-been-told/, . URL http://www.win-vector.com/blog/ 2019/06/data-table-is-much-better-than-you-have-been-told/.
- [6] John Mount. New Timings for a Grouped In-Place Aggregation Task, . URL http://www.win-vector.com/blog/2020/01/ new-timings-for-a-grouped-in-place-aggregation-task/.
- [7] Peter Dalgaard. R 3.4.0 is released, 2017. URL https://stat.ethz.ch/pipermail/r-announce/2017/000612.html.